🌊 CTD Profile Analyzer

Comprehensive analysis of Conductivity, Temperature, and Depth profiles for coastal oceanography by Claudio Iturra (experimental)

Advanced tools for water mass analysis, stratification, and oceanographic calculations

📊 CTD Data Input

Upload CTD Profile Data

📁 Click to upload CTD file

Supported formats: CSV, TXT, CNV (SeaBird)

Expected columns: Depth/Pressure, Temperature, Conductivity, Salinity (optional)

Or use sample CTD profiles:

Data Preview

Upload or select sample data to see preview

📋 Profile Information

🔧 Data Processing

🌍 Location & Time

Data Summary

Load CTD profile data to see summary statistics.

📈 CTD Profile Analysis

18.5
Surface Temp (°C)
12.3
Bottom Temp (°C)
34.2
Surface Salinity (PSU)
35.1
Bottom Salinity (PSU)
25
Thermocline Depth (m)
28
Halocline Depth (m)
CTD Profile Analysis Equations:

1. Practical Salinity (PSS-78):
S = a₀ + a₁R₁/² + a₂R + a₃R³/² + a₄R² + a₅R⁵/²
Where: R = C(S,T,P)/C(35,15,0), C = conductivity
Explanation: UNESCO standard for calculating salinity from conductivity, temperature, and pressure

2. Potential Temperature:
θ = T - ∫₀ᴾ (∂T/∂P)ₛ dP ≈ T - 0.0375×P
Where: T = in-situ temperature, P = pressure
Explanation: Temperature a water parcel would have if moved adiabatically to surface

3. Density (UNESCO EOS-80):
ρ = ρ(S,T,P) = ρ₀ + ρ₁S + ρ₂T + ρ₃P + ...
Where: ρ₀ = 999.842594 kg/m³ at (S=0, T=0, P=0)
Explanation: Seawater density as function of salinity, temperature, and pressure

4. Brunt-Väisälä Frequency:
N² = -(g/ρ)(∂ρ/∂z) = 2.5e-4 s⁻²
Where: g = gravitational acceleration, z = depth
Explanation: Measure of water column stability and stratification strength

5. Mixed Layer Depth:
MLD = depth where Δρ = ρ(z) - ρ(10m) > 0.03 kg/m³
MLD = 15 m
Explanation: Depth of surface mixed layer based on density criterion

📊 Analysis Options

🔍 Layer Detection

Profile Analysis Results

Process CTD data and analyze profile characteristics.

💧 Water Mass Analysis

Water Mass Identification

Surface Water
0-20m
Thermocline
20-80m
Deep Water
>80m
0.75
Mixing Index
Water Mass Analysis Equations:

1. T-S Diagram Analysis:
Water masses plotted in Temperature-Salinity space
Mixing lines: T_mix = f₁T₁ + f₂T₂, S_mix = f₁S₁ + f₂S₂
Where: f₁ + f₂ = 1 (mixing fractions)
Explanation: Conservative mixing between water masses follows straight lines in T-S space

2. Spice Parameter:
π = Σᵢ Σⱼ sᵢⱼ(T-10)ⁱ(S-35)ʲ
Where: sᵢⱼ are empirical coefficients
Explanation: Density-compensated T-S variability measure

3. Water Mass Fraction:
f = (S - S₂)/(S₁ - S₂) for conservative mixing
Where: S₁, S₂ are end-member salinities
Explanation: Fraction of water mass 1 in binary mixture

4. Isopycnal Analysis:
σₜ = ρ(S,T,0) - 1000 kg/m³
σθ = ρ(S,θ,0) - 1000 kg/m³
Where: σₜ = in-situ density, σθ = potential density
Explanation: Density referenced to surface pressure for water mass tracking

🌡️ Stratification Analysis

2.8
Stratification Index
1.2e-3
Max N² (s⁻²)
0.85
Richardson Number
35
Pycnocline Depth (m)
Stratification Analysis Equations:

1. Brunt-Väisälä Frequency:
N² = -(g/ρ₀)(∂ρ/∂z) = 1.2e-3 s⁻²
N = √N² = 0.035 s⁻¹
Where: g = 9.81 m/s², ρ₀ = reference density
Explanation: Natural frequency of internal gravity waves, stability measure

2. Stratification Index:
SI = ∫₀ᴴ N²(z) dz = 2.8 s⁻²·m
Where: H = total depth
Explanation: Integrated measure of water column stability

3. Potential Energy Anomaly:
φ = (1/H) ∫₀ᴴ g(ρ̄ - ρ(z))z dz
Where: ρ̄ = depth-averaged density
Explanation: Energy required to mix water column completely

4. Richardson Number:
Ri = N²/(∂u/∂z)² = 0.85
Where: ∂u/∂z = vertical shear (assumed)
Explanation: Ratio of buoyancy to shear forces (Ri > 0.25 = stable)

5. Turner Angle:
Tu = arctan[(α∂T/∂z + β∂S/∂z)/(α∂T/∂z - β∂S/∂z)] × 180/π
Where: α = thermal expansion, β = haline contraction
Explanation: Indicates double-diffusive instability potential

⚙️ Stratification Parameters

🌊 Double Diffusion

Stratification Results

Analyze water column stability and stratification patterns.

🧮 Derived Oceanographic Parameters

1520
Sound Speed (m/s)
2.1e-4
Thermal Expansion (K⁻¹)
7.8e-4
Haline Contraction (PSU⁻¹)
1.1e-4
Adiabatic Gradient (°C/dbar)
9.7e-4
Specific Volume (m³/kg)
0.85
Dynamic Height (m)
Derived Parameter Equations:

1. Sound Speed (Mackenzie, 1981):
c = 1448.96 + 4.591T - 5.304×10⁻²T² + 2.374×10⁻⁴T³
+ 1.340(S-35) + 1.630×10⁻²D + 1.675×10⁻⁷D²
c = 1520 m/s
Where: T = temperature (°C), S = salinity (PSU), D = depth (m)
Explanation: Speed of sound in seawater for acoustic applications

2. Thermal Expansion Coefficient:
α = -(1/ρ)(∂ρ/∂T)ₛ,ₚ = 2.1e-4 K⁻¹
Explanation: Fractional density change per unit temperature change

3. Haline Contraction Coefficient:
β = (1/ρ)(∂ρ/∂S)ₜ,ₚ = 7.8e-4 PSU⁻¹
Explanation: Fractional density change per unit salinity change

4. Adiabatic Temperature Gradient:
Γ = (∂T/∂P)ₛ = 1.1e-4 °C/dbar
Explanation: Temperature change for adiabatic compression/expansion

5. Dynamic Height:
ΔD = ∫ₚ₁ᵖ² δ(S,T,P) dP
Where: δ = specific volume anomaly
Explanation: Geopotential height difference for geostrophic calculations

6. Specific Volume Anomaly:
δ = α(S,T,P) - α(35,0,P)
Where: α = specific volume (1/ρ)
Explanation: Deviation from standard seawater specific volume

Export Derived Parameters

🔍 Quality Control Analysis

95.2
Data Quality (%)
3
Spikes Detected
7
Outlier Points
0.92
Stability Index
Quality Control Equations:

1. Spike Detection (Median Filter):
Spike if |X(i) - median(X(i-n:i+n))| > k × MAD
Where: MAD = median absolute deviation, k = threshold factor
Explanation: Identifies sudden jumps in sensor readings

2. Density Inversion Check:
Flag if ∂ρ/∂z < -threshold for stable water column
Where: threshold = density gradient limit
Explanation: Detects physically unrealistic density inversions

3. Range Check:
Flag if T < T_min or T > T_max (regional limits)
Flag if S < S_min or S > S_max (regional limits)
Explanation: Identifies values outside expected regional ranges

4. Gradient Check:
Flag if |∂T/∂z| > gradient_limit
Flag if |∂S/∂z| > gradient_limit
Explanation: Detects unrealistic vertical gradients

5. Stability Ratio:
R_ρ = (α∂T/∂z)/(β∂S/∂z)
Where: α = thermal expansion, β = haline contraction
Explanation: Ratio for double-diffusive instability assessment

🔧 QC Parameters

📊 Range Limits

Quality Control Results

Run quality control analysis to identify data issues.