🌊 Physical Oceanography Equations

Complete Reference with Interactive Examples by Claudio Iturra

🌍 Navier-Stokes Equations for Ocean

Momentum Equations:

$$\frac{Du}{Dt} - fv = -\frac{1}{\rho}\frac{\partial p}{\partial x} + \nu \nabla^2 u$$

$$\frac{Dv}{Dt} + fu = -\frac{1}{\rho}\frac{\partial p}{\partial y} + \nu \nabla^2 v$$

$$\frac{Dw}{Dt} = -\frac{1}{\rho}\frac{\partial p}{\partial z} - g + \nu \nabla^2 w$$

Continuity Equation:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

Physical Meaning: These equations describe the motion of seawater under the influence of pressure gradients, Coriolis force, gravity, and viscosity. The Coriolis parameter f = 2Ω sin(φ) accounts for Earth's rotation.

🧮 Coriolis Parameter Calculator

🌡️ Equation of State

UNESCO Equation of State (simplified):

$$\rho = \rho_0 [1 - \alpha(T-T_0) + \beta(S-S_0) + \gamma(p-p_0)]$$

Where:

$\alpha$ = thermal expansion coefficient ≈ 2×10⁻⁴ °C⁻¹

$\beta$ = haline contraction coefficient ≈ 7.6×10⁻⁴ psu⁻¹

$\gamma$ = compressibility ≈ 4.4×10⁻⁶ dbar⁻¹

🧮 Density Calculator

⚖️ Geostrophic Balance

Geostrophic Equations:

$$-fv_g = -\frac{1}{\rho}\frac{\partial p}{\partial x}$$

$$fu_g = -\frac{1}{\rho}\frac{\partial p}{\partial y}$$

In terms of sea surface height:

$$u_g = -\frac{g}{f}\frac{\partial \eta}{\partial y}$$

$$v_g = \frac{g}{f}\frac{\partial \eta}{\partial x}$$

Physical Meaning: Geostrophic flow occurs when Coriolis force balances pressure gradient force. This is the dominant balance in large-scale ocean circulation away from the equator and boundaries.

🧮 Geostrophic Velocity Calculator

🌀 Thermal Wind Relation

Thermal Wind Equations:

$$\frac{\partial u_g}{\partial z} = -\frac{g}{\rho_0 f}\frac{\partial \rho}{\partial y}$$

$$\frac{\partial v_g}{\partial z} = \frac{g}{\rho_0 f}\frac{\partial \rho}{\partial x}$$

Integrated form:

$$\mathbf{V}_g(z_2) - \mathbf{V}_g(z_1) = \frac{g}{\rho_0 f}\int_{z_1}^{z_2} \mathbf{k} \times \nabla_h \rho \, dz$$

📊 Example: Gulf Stream Thermal Wind

Across the Gulf Stream, temperature drops from 20°C to 10°C over 100 km. At 40°N latitude:

🌪️ Ekman Layer Equations

Ekman Balance:

$$-fv = A_z\frac{\partial^2 u}{\partial z^2}$$

$$fu = A_z\frac{\partial^2 v}{\partial z^2}$$

Ekman Solution:

$$u(z) = V_0 e^{z/D_E} \cos\left(\frac{\pi}{4} + \frac{z}{D_E}\right)$$

$$v(z) = V_0 e^{z/D_E} \sin\left(\frac{\pi}{4} + \frac{z}{D_E}\right)$$

Ekman Depth: $D_E = \sqrt{\frac{2A_z}{f}}$

🧮 Ekman Layer Calculator

⬆️ Ekman Pumping

Ekman Pumping Velocity:

$$w_E = \frac{1}{\rho f}\left(\frac{\partial \tau_y}{\partial x} - \frac{\partial \tau_x}{\partial y}\right)$$

$$w_E = \frac{\text{curl}(\boldsymbol{\tau})}{\rho f}$$

Sverdrup Transport:

$$\beta \int_{x_e}^{x_w} v \, dx = \frac{\text{curl}(\boldsymbol{\tau})}{\rho}$$

📊 Example: Wind Stress Curl

Calculate Ekman pumping from wind stress curl measurements:

🌊 Linear Wave Theory

Dispersion Relation:

$$\omega^2 = gk \tanh(kh)$$

Deep Water Waves (kh >> 1):

$$\omega^2 = gk, \quad c = \sqrt{\frac{g}{k}} = \sqrt{\frac{gT}{2\pi}}$$

Shallow Water Waves (kh << 1):

$$\omega^2 = gk^2h, \quad c = \sqrt{gh}$$

Group Velocity:

$$c_g = \frac{\partial \omega}{\partial k} = \frac{1}{2}c\left(1 + \frac{2kh}{\sinh(2kh)}\right)$$

🧮 Wave Properties Calculator

🌀 Internal Waves

Brunt-Väisälä Frequency:

$$N^2 = -\frac{g}{\rho_0}\frac{d\rho}{dz} = \frac{g}{\rho_0}\left(\alpha\frac{dT}{dz} - \beta\frac{dS}{dz}\right)$$

Internal Wave Dispersion:

$$\omega^2 = N^2\frac{k_h^2}{k_h^2 + k_z^2} + f^2\frac{k_z^2}{k_h^2 + k_z^2}$$

Inertial-Gravity Waves:

$$f^2 \leq \omega^2 \leq N^2$$

🧮 Buoyancy Frequency Calculator

🌡️ Heat and Salt Conservation

Temperature Equation:

$$\frac{DT}{Dt} = \kappa_T \nabla^2 T + \frac{Q}{\rho c_p}$$

Salinity Equation:

$$\frac{DS}{Dt} = \kappa_S \nabla^2 S + \frac{S(E-P)}{\rho}$$

Potential Temperature:

$$\theta = T - \int_0^p \frac{\alpha T}{c_p} dp'$$

Potential Density:

$$\sigma_\theta = \rho(\theta, S, 0) - 1000 \text{ kg/m}^3$$

🧮 Potential Temperature Calculator

🔄 Thermohaline Circulation

Meridional Overturning Circulation:

$$\Psi(y,z) = \int_{z}^{0} \int_{x_w}^{x_e} v(x,y,z') \, dx \, dz'$$

Stommel's Box Model:

$$\frac{dT_1}{dt} = \gamma(T_0 - T_1) - q(T_1 - T_2)$$

$$\frac{dS_1}{dt} = \gamma(S_0 - S_1) - q(S_1 - S_2)$$

$$q = k|\alpha(T_1-T_2) - \beta(S_1-S_2)|$$

📊 Example: Stommel Box Model

Two-box model of thermohaline circulation:

🌪️ Turbulent Mixing

Reynolds Decomposition:

$$u = \bar{u} + u', \quad v = \bar{v} + v', \quad w = \bar{w} + w'$$

Turbulent Kinetic Energy:

$$\text{TKE} = \frac{1}{2}(\overline{u'^2} + \overline{v'^2} + \overline{w'^2})$$

Richardson Number:

$$Ri = \frac{N^2}{(\partial u/\partial z)^2 + (\partial v/\partial z)^2}$$

Critical Richardson Number: $Ri_c = 0.25$

🧮 Richardson Number Calculator

🔀 Diapycnal Mixing

Osborn Model:

$$K_\rho = \Gamma \frac{\varepsilon}{N^2}$$

Where: $\Gamma = 0.2$ (mixing efficiency)

Thorpe Scale:

$$L_T = \sqrt{\overline{d^2}}$$

Ozmidov Scale:

$$L_O = \sqrt{\frac{\varepsilon}{N^3}}$$

🧮 Mixing Parameters Calculator

🌙 Tidal Equations

Laplace Tidal Equations:

$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial \eta}{\partial x} + \frac{\tau_x}{\rho H}$$

$$\frac{\partial v}{\partial t} + fu = -g\frac{\partial \eta}{\partial y} + \frac{\tau_y}{\rho H}$$

$$\frac{\partial \eta}{\partial t} + \frac{\partial}{\partial x}(Hu) + \frac{\partial}{\partial y}(Hv) = 0$$

Tidal Potential:

$$V = \sum_{n,m} A_{nm} P_n^m(\sin\phi) \cos(m\lambda + \omega t + \phi_{nm})$$

🧮 Tidal Harmonic Analysis

📊 Important Parameters Table

Parameter Symbol Typical Value Units
Earth's rotation rateΩ7.27 × 10⁻⁵rad/s
Gravitational accelerationg9.81m/s²
Seawater densityρ1025kg/m³
Thermal expansionα2 × 10⁻⁴°C⁻¹
Haline contractionβ7.6 × 10⁻⁴psu⁻¹
Specific heatcp4000J/(kg·°C)
Molecular viscosityν10⁻⁶m²/s
Eddy viscosityAz10⁻² - 10⁻¹m²/s
Buoyancy frequencyN10⁻³ - 10⁻²rad/s
Rossby radiusLR10 - 100km