🌍 Navier-Stokes Equations for Ocean
Momentum Equations:
$$\frac{Du}{Dt} - fv = -\frac{1}{\rho}\frac{\partial p}{\partial x} + \nu \nabla^2 u$$
$$\frac{Dv}{Dt} + fu = -\frac{1}{\rho}\frac{\partial p}{\partial y} + \nu \nabla^2 v$$
$$\frac{Dw}{Dt} = -\frac{1}{\rho}\frac{\partial p}{\partial z} - g + \nu \nabla^2 w$$
Continuity Equation:
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
Physical Meaning: These equations describe the motion of seawater under the influence of pressure gradients, Coriolis force, gravity, and viscosity. The Coriolis parameter f = 2Ω sin(φ) accounts for Earth's rotation.
🧮 Coriolis Parameter Calculator
🌡️ Equation of State
UNESCO Equation of State (simplified):
$$\rho = \rho_0 [1 - \alpha(T-T_0) + \beta(S-S_0) + \gamma(p-p_0)]$$
Where:
$\alpha$ = thermal expansion coefficient ≈ 2×10⁻⁴ °C⁻¹
$\beta$ = haline contraction coefficient ≈ 7.6×10⁻⁴ psu⁻¹
$\gamma$ = compressibility ≈ 4.4×10⁻⁶ dbar⁻¹
🧮 Density Calculator
⚖️ Geostrophic Balance
Geostrophic Equations:
$$-fv_g = -\frac{1}{\rho}\frac{\partial p}{\partial x}$$
$$fu_g = -\frac{1}{\rho}\frac{\partial p}{\partial y}$$
In terms of sea surface height:
$$u_g = -\frac{g}{f}\frac{\partial \eta}{\partial y}$$
$$v_g = \frac{g}{f}\frac{\partial \eta}{\partial x}$$
Physical Meaning: Geostrophic flow occurs when Coriolis force balances pressure gradient force. This is the dominant balance in large-scale ocean circulation away from the equator and boundaries.
🧮 Geostrophic Velocity Calculator
🌀 Thermal Wind Relation
Thermal Wind Equations:
$$\frac{\partial u_g}{\partial z} = -\frac{g}{\rho_0 f}\frac{\partial \rho}{\partial y}$$
$$\frac{\partial v_g}{\partial z} = \frac{g}{\rho_0 f}\frac{\partial \rho}{\partial x}$$
Integrated form:
$$\mathbf{V}_g(z_2) - \mathbf{V}_g(z_1) = \frac{g}{\rho_0 f}\int_{z_1}^{z_2} \mathbf{k} \times \nabla_h \rho \, dz$$
📊 Example: Gulf Stream Thermal Wind
Across the Gulf Stream, temperature drops from 20°C to 10°C over 100 km. At 40°N latitude:
🌪️ Ekman Layer Equations
Ekman Balance:
$$-fv = A_z\frac{\partial^2 u}{\partial z^2}$$
$$fu = A_z\frac{\partial^2 v}{\partial z^2}$$
Ekman Solution:
$$u(z) = V_0 e^{z/D_E} \cos\left(\frac{\pi}{4} + \frac{z}{D_E}\right)$$
$$v(z) = V_0 e^{z/D_E} \sin\left(\frac{\pi}{4} + \frac{z}{D_E}\right)$$
Ekman Depth: $D_E = \sqrt{\frac{2A_z}{f}}$
🧮 Ekman Layer Calculator
⬆️ Ekman Pumping
Ekman Pumping Velocity:
$$w_E = \frac{1}{\rho f}\left(\frac{\partial \tau_y}{\partial x} - \frac{\partial \tau_x}{\partial y}\right)$$
$$w_E = \frac{\text{curl}(\boldsymbol{\tau})}{\rho f}$$
Sverdrup Transport:
$$\beta \int_{x_e}^{x_w} v \, dx = \frac{\text{curl}(\boldsymbol{\tau})}{\rho}$$
📊 Example: Wind Stress Curl
Calculate Ekman pumping from wind stress curl measurements:
🌊 Linear Wave Theory
Dispersion Relation:
$$\omega^2 = gk \tanh(kh)$$
Deep Water Waves (kh >> 1):
$$\omega^2 = gk, \quad c = \sqrt{\frac{g}{k}} = \sqrt{\frac{gT}{2\pi}}$$
Shallow Water Waves (kh << 1):
$$\omega^2 = gk^2h, \quad c = \sqrt{gh}$$
Group Velocity:
$$c_g = \frac{\partial \omega}{\partial k} = \frac{1}{2}c\left(1 + \frac{2kh}{\sinh(2kh)}\right)$$
🧮 Wave Properties Calculator
🌀 Internal Waves
Brunt-Väisälä Frequency:
$$N^2 = -\frac{g}{\rho_0}\frac{d\rho}{dz} = \frac{g}{\rho_0}\left(\alpha\frac{dT}{dz} - \beta\frac{dS}{dz}\right)$$
Internal Wave Dispersion:
$$\omega^2 = N^2\frac{k_h^2}{k_h^2 + k_z^2} + f^2\frac{k_z^2}{k_h^2 + k_z^2}$$
Inertial-Gravity Waves:
$$f^2 \leq \omega^2 \leq N^2$$
🧮 Buoyancy Frequency Calculator
🌡️ Heat and Salt Conservation
Temperature Equation:
$$\frac{DT}{Dt} = \kappa_T \nabla^2 T + \frac{Q}{\rho c_p}$$
Salinity Equation:
$$\frac{DS}{Dt} = \kappa_S \nabla^2 S + \frac{S(E-P)}{\rho}$$
Potential Temperature:
$$\theta = T - \int_0^p \frac{\alpha T}{c_p} dp'$$
Potential Density:
$$\sigma_\theta = \rho(\theta, S, 0) - 1000 \text{ kg/m}^3$$
🧮 Potential Temperature Calculator
🔄 Thermohaline Circulation
Meridional Overturning Circulation:
$$\Psi(y,z) = \int_{z}^{0} \int_{x_w}^{x_e} v(x,y,z') \, dx \, dz'$$
Stommel's Box Model:
$$\frac{dT_1}{dt} = \gamma(T_0 - T_1) - q(T_1 - T_2)$$
$$\frac{dS_1}{dt} = \gamma(S_0 - S_1) - q(S_1 - S_2)$$
$$q = k|\alpha(T_1-T_2) - \beta(S_1-S_2)|$$
📊 Example: Stommel Box Model
Two-box model of thermohaline circulation:
🌪️ Turbulent Mixing
Reynolds Decomposition:
$$u = \bar{u} + u', \quad v = \bar{v} + v', \quad w = \bar{w} + w'$$
Turbulent Kinetic Energy:
$$\text{TKE} = \frac{1}{2}(\overline{u'^2} + \overline{v'^2} + \overline{w'^2})$$
Richardson Number:
$$Ri = \frac{N^2}{(\partial u/\partial z)^2 + (\partial v/\partial z)^2}$$
Critical Richardson Number: $Ri_c = 0.25$
🧮 Richardson Number Calculator
🔀 Diapycnal Mixing
Osborn Model:
$$K_\rho = \Gamma \frac{\varepsilon}{N^2}$$
Where: $\Gamma = 0.2$ (mixing efficiency)
Thorpe Scale:
$$L_T = \sqrt{\overline{d^2}}$$
Ozmidov Scale:
$$L_O = \sqrt{\frac{\varepsilon}{N^3}}$$
🧮 Mixing Parameters Calculator
🌙 Tidal Equations
Laplace Tidal Equations:
$$\frac{\partial u}{\partial t} - fv = -g\frac{\partial \eta}{\partial x} + \frac{\tau_x}{\rho H}$$
$$\frac{\partial v}{\partial t} + fu = -g\frac{\partial \eta}{\partial y} + \frac{\tau_y}{\rho H}$$
$$\frac{\partial \eta}{\partial t} + \frac{\partial}{\partial x}(Hu) + \frac{\partial}{\partial y}(Hv) = 0$$
Tidal Potential:
$$V = \sum_{n,m} A_{nm} P_n^m(\sin\phi) \cos(m\lambda + \omega t + \phi_{nm})$$
🧮 Tidal Harmonic Analysis
📊 Important Parameters Table
Parameter | Symbol | Typical Value | Units |
---|---|---|---|
Earth's rotation rate | Ω | 7.27 × 10⁻⁵ | rad/s |
Gravitational acceleration | g | 9.81 | m/s² |
Seawater density | ρ | 1025 | kg/m³ |
Thermal expansion | α | 2 × 10⁻⁴ | °C⁻¹ |
Haline contraction | β | 7.6 × 10⁻⁴ | psu⁻¹ |
Specific heat | cp | 4000 | J/(kg·°C) |
Molecular viscosity | ν | 10⁻⁶ | m²/s |
Eddy viscosity | Az | 10⁻² - 10⁻¹ | m²/s |
Buoyancy frequency | N | 10⁻³ - 10⁻² | rad/s |
Rossby radius | LR | 10 - 100 | km |