🌊 Coastal Internal Wave Analysis Platform

Advanced Evaluation of Internal Waves in Coastal Ocean Environments by Claudio Iturra

πŸ“Š Water Column Stratification Analysis

Brunt-VΓ€isΓ€lΓ€ Frequency:

$$N^2(z) = -\frac{g}{\rho_0}\frac{d\rho}{dz} = \frac{g}{\rho_0}\left(\alpha\frac{dT}{dz} - \beta\frac{dS}{dz}\right)$$

Stratification Parameter:

$$S = \frac{1}{H}\int_0^H N(z) dz$$

🌑️ Temperature Profile

πŸ§‚ Salinity Profile

🌊 Environmental Parameters

πŸŒ€ Internal Wave Properties Calculator

Internal Wave Dispersion Relation:

$$\omega^2 = N^2\frac{k_h^2}{k_h^2 + k_z^2} + f^2\frac{k_z^2}{k_h^2 + k_z^2}$$

Phase Speed: $c = \frac{\omega}{k_h}$

Group Speed: $c_g = \frac{\partial\omega}{\partial k_h}$

🌊 Wave Parameters

🎯 Stratification Input

⚑ Internal Wave Generation Mechanisms

Select Generation Mechanism:

Tidal Generation over Topography:

$$E = \frac{1}{2}\rho_0 N^2 U_0^2 h_0^2 \frac{k_h^2}{k_h^2 + k_z^2}$$

Conversion Rate:

$$P = \rho_0 N^2 U_0^2 h_0^2 k_h \sin(k_h x)$$

🌊 Tidal Parameters

πŸ“Š Environmental Conditions

πŸ„ Wave Propagation & Shoaling Analysis

Shoaling Coefficient:

$$K_s = \sqrt{\frac{c_{g0}}{c_g}} = \sqrt{\frac{N_0 H_0}{N H}}$$

Amplitude Evolution:

$$A(x) = A_0 K_s \exp\left(-\int_0^x \alpha dx'\right)$$

Ray Tracing:

$$\frac{dk_x}{dx} = -\frac{\partial\omega}{\partial x}, \quad \frac{dk_z}{dz} = -\frac{\partial\omega}{\partial z}$$

🌊 Initial Conditions

πŸ”οΈ Bathymetry Profile

πŸ’₯ Internal Wave Breaking Analysis

Breaking Criteria:

$$Ri = \frac{N^2}{(\partial u/\partial z)^2} < Ri_c = 0.25$$

Convective Instability:

$$\frac{\partial\rho}{\partial z} > 0 \quad \text{(unstable)}$$

Shear Instability:

$$|u_z| > \frac{N}{2} \quad \text{(Miles-Howard criterion)}$$

🌊 Wave Characteristics

⚑ Instability Parameters

πŸŒͺ️ Turbulent Mixing from Internal Waves

Dissipation Rate:

$$\varepsilon = \frac{1}{2}\nu\left\langle\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)^2\right\rangle$$

Diapycnal Diffusivity:

$$K_\rho = \Gamma\frac{\varepsilon}{N^2}$$

Thorpe Scale:

$$L_T = \sqrt{\langle d^2 \rangle}$$

πŸ“Š Turbulence Measurements

🌊 Wave-Induced Mixing

πŸ“ˆ Field Data Analysis Tools

πŸ“Š Data Input

πŸ” Analysis Parameters

πŸ“‹ Analysis Summary Table

Parameter Value Units Status Notes
Dominant Frequency - cph Normal Within internal wave band
Wave Amplitude - m Moderate Typical for coastal waters
Richardson Number - - Stable Above critical value
Mixing Rate - mΒ²/s Low Background mixing