Tidal Ellipse Analysis

Advanced harmonic analysis of tidal currents with ellipse parameter calculation, constituent identification, and comprehensive visualization by Claudio Iturra

Start Analysis

Tidal Velocity Data Input

Enter your tidal velocity time series and location parameters

Input Configuration

📍 Location Parameters

Analysis Options

Tidal Ellipse Parameters

🔄 Ellipse Geometry

  • Semi-major axis (a): Maximum current speed
  • Semi-minor axis (b): Minimum current speed
  • Inclination (θ): Orientation of major axis
  • Eccentricity (e): Shape parameter (0=circle, 1=line)

🌊 Tidal Properties

  • Phase (φ): Time of maximum current
  • Sense: Clockwise or counterclockwise rotation
  • Amplitude: Vector magnitude of tidal current
  • Greenwich phase: Referenced to Greenwich

📊 Major Constituents

M2: 12.42h (Principal lunar)
S2: 12.00h (Principal solar)
N2: 12.66h (Lunar elliptic)
K1: 23.93h (Lunar diurnal)
O1: 25.82h (Lunar diurnal)
K2: 11.97h (Lunisolar)

Tidal Ellipse Analysis Results

Comprehensive harmonic analysis and ellipse visualization

No Analysis Results Yet

Enter your tidal velocity data and perform analysis to see ellipse results

Go to Data Input

Tidal Ellipse Theory

Mathematical foundations and harmonic analysis principles

Harmonic Analysis

Tidal currents are decomposed into harmonic constituents:

u(t) = Σ [Aᵢ cos(ωᵢt + φᵢ)]
v(t) = Σ [Bᵢ cos(ωᵢt + ψᵢ)]

Where:

  • ωᵢ = angular frequency of constituent i
  • Aᵢ, Bᵢ = amplitudes in u, v directions
  • φᵢ, ψᵢ = phase lags

Ellipse Parameters

From complex representation w = u + iv:

w = W⁺e^(iωt) + W⁻e^(-iωt)

Ellipse parameters:

a = |W⁺| + |W⁻| (semi-major)
b = ||W⁺| - |W⁻|| (semi-minor)
θ = ½arg(W⁺W⁻*) (inclination)
φ = arg(W⁺) (phase)

Nodal Corrections

Account for 18.6-year lunar nodal cycle:

A'ᵢ = fᵢ × Aᵢ
φ'ᵢ = φᵢ + uᵢ

Where fᵢ and uᵢ are nodal amplitude and phase corrections.

Critical for long-term predictions and accurate constituent separation.

Applications

Navigation

Current predictions for safe passage planning

Engineering

Design loads for offshore structures

Oceanography

Understanding tidal mixing and transport

Climate

Long-term tidal energy dissipation studies