🌬️ Concepción Coastal Wind Generation Analysis

Comprehensive evaluation of coastal wind patterns, sea breezes, and meteorological forcing mechanisms by Claudio Iturra

📍 Location
Concepción, Chile
36.8°S, 73.0°W
🏔️ Topography
Coastal Plain
Andes Mountains (E)
🌊 Coast Orientation
N-S Coastline
Pacific Ocean (W)
🌡️ Climate Zone
Mediterranean
Temperate Oceanic
⭐ Latitude Effect
Mid-Latitude
Westerly Belt

🌅 Diurnal Wind Cycle Analysis

4.2
Sea Breeze Strength (m/s)
2.1
Land Breeze Strength (m/s)
8.5
Land-Sea Temp Diff (°C)
1.2
Pressure Gradient (hPa/km)
15
Convergence Zone (km)
850
Mixing Height (m)
🌊 SEA BREEZE DOMINANT
Diurnal Wind Generation Equations:

Sea Breeze Velocity: V_sb = √(2gΔT·h/T₀) = 4.2 m/s
Pressure Gradient: ∇P = ρg(ΔT/T₀)Δx = 1.2 hPa/km
Thermal Wind: ∂V/∂z = (g/fT₀)(∂T/∂x) = 0.8 s⁻¹
Coriolis Effect: f = 2Ω sin(φ) = -8.76×10⁻⁵ s⁻¹
Mixing Height: h_mix = u*³/(κB) = 850 m

🌡️ Thermal Conditions

🌬️ Atmospheric Conditions

Diurnal Wind Analysis

Click "Calculate Diurnal Cycle" to see detailed analysis.

🌊 Sea Breeze System Dynamics

Onshore Component

Vertical Structure

1200
Sea Breeze Depth (m)
45
Inland Penetration (km)
3.5
Front Speed (m/s)
2.8
Return Flow (m/s)
5.2
Convergence (×10⁻⁵ s⁻¹)
-3.1
Vorticity (×10⁻⁵ s⁻¹)
Sea Breeze System Equations:

Sea Breeze Depth: H = √(2CₚΔT·L/g) = 1200 m
Penetration Distance: L = V_sb × t_sb = 45 km
Front Speed: V_f = √(g'H) where g' = gΔρ/ρ = 3.5 m/s
Return Flow: V_r = -V_sb(H_sb/H_total) = 2.8 m/s
Convergence: ∇·V = ∂u/∂x + ∂v/∂y = 5.2×10⁻⁵ s⁻¹

🌊 Sea Breeze Parameters

🏔️ Topographic Influence

Sea Breeze System Analysis

Sea breeze system parameters calculated.

🌀 Synoptic Wind Patterns

1024
Pacific High (hPa)
12.5
Westerlies (m/s)
8
Fronts/Month
42
Storm Track Lat (°S)
200
Jet Stream (hPa)
0.15
Blocking Index
Synoptic Scale Equations:

Geostrophic Wind: V_g = -(1/ρf)∇P = 12.5 m/s
Thermal Wind: ∂V_g/∂z = -(g/fT)∇T = 0.5 s⁻¹
Rossby Wave Speed: c = U - β/(k² + l²) = 8.2 m/s
Storm Track: φ = φ₀ + A·sin(2πt/T) = 42°S
Blocking Parameter: B = (Z₅₀₀ - Z₅₀₀_clim)/σ = 0.15

🌀 Pressure Systems

🌊 Large-Scale Patterns

Synoptic Pattern Analysis

Synoptic wind patterns analyzed for current conditions.

📅 Seasonal Wind Pattern Analysis

🌞 Summer (Dec-Feb)

6.2
Sea Breeze (m/s)
8.5
Synoptic Wind (m/s)

Characteristics: Strong sea breezes, Pacific High dominance, weak synoptic forcing, thermal contrasts maximum.

🍂 Autumn (Mar-May)

4.1
Sea Breeze (m/s)
11.2
Synoptic Wind (m/s)

Characteristics: Transitional period, increasing synoptic activity, moderate sea breezes, frontal passages.

❄️ Winter (Jun-Aug)

2.8
Sea Breeze (m/s)
15.3
Synoptic Wind (m/s)

Characteristics: Strong westerlies, frequent storms, weak thermal contrasts, synoptic dominance.

🌸 Spring (Sep-Nov)

5.0
Sea Breeze (m/s)
9.8
Synoptic Wind (m/s)

Characteristics: Increasing sea breeze activity, variable synoptic patterns, growing thermal contrasts.

Seasonal Variation Equations:

Seasonal Wind: V(t) = V₀ + A·cos(2πt/365 + φ) + B·cos(4πt/365)
Thermal Contrast: ΔT(t) = ΔT₀[1 + C·cos(2πt/365)]
Sea Breeze Frequency: f_sb(t) = f₀·[1 + D·sin(2πt/365)]
Synoptic Activity: SA(t) = SA₀·[1 + E·cos(2πt/365 + π)]

🏔️ Topographic Wind Effects

Mountain-Valley Winds

Coastal Channeling

3.8
Valley Wind (m/s)
5.2
Mountain Wind (m/s)
1.8
Channeling Factor
2.1
Orographic Lift (m/s)
4.5
Lee Wave Amp (m/s)
12.3
Gap Flow (m/s)
Topographic Wind Equations:

Valley Wind: V_valley = √(2gΔT·h_valley/T₀) = 3.8 m/s
Channeling Factor: CF = V_channel/V_free = 1.8
Orographic Lift: w = V·∂h/∂x = 2.1 m/s
Lee Wave: λ = 2πU/N = 15.2 km
Gap Flow: V_gap = √(2ΔP/ρ) = 12.3 m/s

🏔️ Terrain Parameters

🌬️ Flow Conditions

Topographic Effects Analysis

Topographic wind effects calculated for current terrain configuration.

📊 Annual Wind Pattern Variations

9.2
Annual Mean Wind (m/s)
4.8
Wind Variability (m/s)
68
Sea Breeze Frequency (%)
12
Storm Days/Year
8
Calm Periods (%)
225
Prevailing Direction (°)
Annual Pattern Statistics:

Mean Wind: V̄ = (1/N)Σᵢ₌₁ᴺ Vᵢ = 9.2 m/s
Standard Deviation: σ = √[(1/N)Σᵢ₌₁ᴺ(Vᵢ - V̄)²] = 4.8 m/s
Weibull Scale: A = V̄/Γ(1 + 1/k) = 10.4 m/s
Weibull Shape: k = (σ/V̄)⁻¹·⁰⁸⁶ = 2.1
Directional Constancy: DC = |V̄_vector|/V̄_scalar = 0.75

Annual Wind Rose

Seasonal Comparison